醉书楼 > 都市小说 > 规则系学霸TXT下载 > 规则系学霸最新章节列表 > 第六百章 粒子被压缩倍率的临界值(第6节)

规则系学霸最新章节全文阅读

作者:不吃小南瓜  加入书架  规则系学霸不吃小南瓜  规则系学霸全文阅读
规则系学霸最新章节新书《科技源点》(24-06-03)    新书《从大学讲师到首席院士》(22-06-16)    新书《败家系男神》(22-05-06)    

第六百章 粒子被压缩倍率的临界值(第6节)

关的压缩材料,用于保护z波发生装置。”

这个做法就是对z波发生器进行材料部件更新了。

等相关的部件更新以后,z波发生装置承受z波冲击能力大大加强,以后就很难出现类似的损坏情况。

有道是,磨刀不误砍柴工,先把工作做好,再去进行相关的实验,实验就能更加频繁,实验数据也能变得更加精准。

与此同时。

过去的五次实验,已经足够让赵奕,得出粒子对抗空间压缩的倍率问题了。

理论组利用前后六次实验数据,得出了两个可能的结果。

超导材料被压缩2.9倍,就已经无法检测出超导状态的反重力特性,同时,被压缩的2.1倍时,可以检测出微弱的超导状态反重力特性。

张祁灿做出了研究总结,“所以,一个可能是,粒子被压缩对抗空间吸收能力,呈现出幂数级降低,超过2.2倍左右,就无法再检测到。”

“另外,还有一种可能是,在2.1到2.9之间,存在一个倍率数字,可以使得粒子用完全抵抗空间吸收特性。”

这是两个分析结果。

赵奕则是利用因果思维能力,得到了更加准确的结论,压缩粒子对抗空间吸收,确实存在一个‘临界值’,超过临界值时,粒子的抗空间吸收能力,就会和空间挤压达成平衡。

这种平衡就好像是一面盾牌,能够直接抵抗刀剑的砍伤,因为刀剑的锋利程度是固定的,盾牌的强度再高一些,也依旧是摆放在那里,依旧是无法攻破的,现实意义来说,也依旧和刀剑的砍伤达成平衡。

赵奕得出粒子被压缩的临界值,比实验推断数据更精细,区间在2.65-2.73之间。

这个区间的数字,马上就能想到一个特殊的--

自然常数,e,e约等于2.718。

建立提问--

【压缩粒子对抗空间吸收,并达成平衡的最低倍率(临界值),是否和自然常数e相等?】

【a.相等。】

【b.不相等。】

【《因果律》!】

【答案:a。】