人类心智巅峰的游戏,本身就没有什么解决问题的定式。
在卡拉比猜想被解决之前,微分几何学界从来没想到偏微分方程和黎曼几何还能这么玩。而卡拉比猜想被解决之后,基于pde方法的几何分析学便应运而生了。
说不准,在解决ns方程的同时,他能从中发现更伟大的东西也不一定?
回到书房之后,他便打开了电脑,开始检索起关于ns方程的文献。
毕竟是被克雷研究所悬赏的世纪难题,ns方程在偏微分领域拥有举足轻重的地位,因此偏微分方程界的学者们围绕这个方程也做出了不少漂亮的研究成果。
每当研究陷入瓶颈的时候,陆舟都会通过从数据库中检索论文的方式,试图去寻找自己所欠缺的那块拼图。
就像佩雷尔曼在看到汉密尔顿关于理解rii流奇点的论文之后,立刻将这套方法运用在解决庞加莱猜想时一样,他也在寻找着类似的东西。
然而……
想要找到这块拼图,显然没有这么简单。
窗外的晚霞已经铺上了漫天的繁星,墙上挂钟的时针也走过了12点,开始向着1点偏移。
长出一口气,陆舟靠在了椅子上,捏了捏有些酸涩的眉心。
他脑海中那飘忽不定的思绪,一会儿像是几乎凝固的墨汁,一会儿又变成了发散的烟柱,令人头疼不已。
然而也就在这隐约之中,陆舟的心中忽然出现了一丝明悟。
“没有工具的话,为什么不自己造一个……”
如果将每一个分子抽象成一个点,而将容纳这些点的集合,抽象成局部具有欧几里得空间性质的空间,他完全可以基于此构造一个近似的三维流形,并且将拓扑学的方法进去……
这看起来似乎将“简单”的问题变的更“复杂”了。
但似乎……
是行得通的?
眼睛越来越亮。
抓着那冥冥之中的一丝灵感,陆舟迅速抓起了圆珠笔,在纸上写下了一行字。
【流形】
然后,他手中的笔,便停不下来了……
……
当全身心地沉浸于一项工作时,时间总是过得很快。
转眼间,就到了四月。
在这一个多月的时间里,将自己关在屋子里的陆舟,期间还度过了一个短暂而单调的春假。
而这段时间里,除了薇拉来过他的屋子一次,给他送来了这段时间的教学报告之外,陆舟几乎切断了与外界的交流。
而事实上,虽然那些东西是他让薇拉送来的,但那些东西送来之后便被他搁在了书房的角落,几乎没有翻过。
在普林斯顿,陆教授独特的钻研问题方式,几乎可以算是一段趣闻了,就连入学不久的本科生都从老生那里听说过。
本章未完,请点击"下一页"继续阅读! 第2页 / 共3页